On a Generalized Hyers-Ulam Stability of Trigonometric Functional Equations
نویسندگان
چکیده
منابع مشابه
On a Generalized Hyers-Ulam Stability of Trigonometric Functional Equations
The Hyers-Ulam stability problems of functional equations go back to 1940 when S. M. Ulam proposed a question concerning the approximate homomorphisms from a group to a metric group see 1 . A partial answer was given by Hyers et al. 2, 3 under the assumption that the target space of the involved mappings is a Banach space. After the result of Hyers, Aoki 4 , and Bourgin 5, 6 dealt with this pro...
متن کاملHyers-Ulam stability of a generalized trigonometric-quadratic functional equation
The Hyers-Ulam stability of the generalized trigonometric-quadratic functional equation ( ) ( ) ( ) ( ) ( ) ( ) 2 F x y G x y H x K y L x M y + − − = + + over the domain of an abelian group and the range of the complex field is established based on the assumption of the unboundedness of the function K. Subject to certain natural conditions, explicit shapes of the functions H and K are determine...
متن کاملGeneralized Hyers–ulam Stability of Refined Quadratic Functional Equations
In this paper, we give a general solution of a refined quadratic functional equation and then investigate its generalized Hyers–Ulam stability in quasi-normed spaces and in non-Archimedean normed spaces. AMS Subject Classification: 39B82, 39B62
متن کاملOn the Hyers-ulam Stability of Quadratic Functional Equations
In this paper, we obtain the general solution and the generalized Hyers-Ulam stability for quadratic functional equations f(2x+ y)+ f(2x− y) = f(x+ y)+ f(x− y)+6f(x) and f(2x + y) + f(x + 2y) = 4f(x + y) + f(x) + f(y).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2012
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2012/610714